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Superstructure gratings in the tight-binding approximation
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The reflection properties of gratings, such as those found in the core of an optical fiber, previously have been
interpreted in terms of evanescent or propagating wave behavior in different parts of the grating. According to
this interpretation, nonuniform gratings can thus be understood in a similar way to one-dimensional quantum-
well structures. Here we exploit this similarity to develop an analytic theory for deep Bragg superstructure
gratings. Using a method similar to the tight-binding method from condensed matter physics, we find approxi-
mate analytic expressions for the high- and low-reflectance frequency regions of such gratings.
@S1063-651X~98!01003-4#

PACS number~s!: 42.79.Dj, 42.81.Wg, 71.15.Fv
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I. INTRODUCTION

Superstructure Bragg gratings~SSGs!, or optical superlat-
tices, are gratings with parameters that vary periodically a
function of position@1–7#. SSGs thus have two periodicitie
one at the level of the wavelength of light, indicated byd,
and a superstructure periodL, which is typically 1 mm to 1
cm. To understand qualitatively the key properties of SS
we consider the Fourier spectrum of the refractive ind
@2,3,7#. Since a uniform grating is characterized by a sin
periodd, this spectrum consists of a series of frequency co
ponents, the lowest of which is at frequency 2p/d. This
leads to a reflection spectrum consisting of a peak at
Bragg frequencyf 5c/2n̄d, wherec is the speed of light in
vacuum andn̄ is the average refractive index in the gratin
reflections associated with higher harmonics occur at m
higher frequencies. In contrast, the spectrum of a SSG c
sists of contributions at frequencies . . . , 2p(1/d22/L),
2p(1/d21/L), 2p/d, 2p(1/d11/L), 2p(1/d12/L), . . . ,
with the amplitudes of the various components depending
the details of the SSG. In the limit in which the SSG is we
roughly corresponding to the condition that the SSG is
weak perturbation on a uniform grating, each Fourier coe
cient of the refractive index distribution now leads to
associated peak in the reflection spectrum@2,3,7,8#. Thus the
reflection spectrum of a SSG consists of peaks~Rowland
ghosts@9#! at closely spaced frequencies clustered about
Bragg frequency @2,3#: f N5c/2n̄ (1/d1N/L), where
N50,61, . . . . Though this simple picture fails when th
SSG is not shallow@7#, it nevertheless gives an appealin
intuitive understanding of the qualitative features of the
flection spectrum of a SSG.

The fact that the reflection spectrum of SSGs consis
lines that are approximately equally spaced has led to a n
ber of applications, which have been realized in both se
conductor@2,6# and fiber geometries@3–5#. Applications in-
clude tunable distributed feedback lasers in semiconduc
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and fibers@2–4,6# and multichannel dispersion compensati
in optical fibers@5#. SSGs also have interesting nonline
optical properties@10,11#, though we do not discuss thes
here.

Coupled-mode theory@8# is a widely used method to ana
lyze gratings. In this method one works with the envelop
of electric field rather than with the field itself. This signifi
cantly reduces the complexity of the problem compared
solving Maxwell’s equations directly. Nonetheless, in ge
eral one cannot find analytic expressions for key SSG par
eters. An exception is shallow SSGs, to which the argum
outlined in the first paragraph above can be applied. T
Fourier argument does allow one, for example, to find a
lytic expressions for the widths of the highly reflective spe
tral regions. Here we develop the theory for the oppos
limit, that of deep SSGs, for which analytic results can a
be obtained.

To find analytic results for deep SSGs it is important
note that coupled-mode theory allows one to underst
SSGs in a way complementary to the Fourier argument
scribed in the first paragraph above~though the Fourier ar-
gument also follows from coupled-mode theory!. According
to coupled-mode theory, the field envelope in a uniform gr
ing is evanescent for frequencies close tof B , leading to
strong reflection, whereas it is propagating sufficiently
from f B @12#. Thus, for frequencies sufficiently close tof B
the grating acts as if it were a potential barrier. A SSG,
which the grating parameters vary periodically, can
thought of as a periodic array of potential barriers, separa
by potential wells@12#. From the physics of crystalline solid
we know that such periodic arrays lead to bands, separ
by gaps@13#. A SSG can be understood similarly: The pe
odicity gives rise to~photonic! bands where the reflectivity is
low, separated by~Rowland ghost! gaps, where the reflectiv
ity is high. Here we make use of this interpretation of SS
in terms of wells and barriers. In particular, we adapt t
tight-binding method@13#, developed to determine the prop
erties of crystalline solids, to SSGs and use it to find appro
mate analytic expressions for the high- and low-reflectiv
spectral regions, as well as analytic expressions for the a
ciated eigenfields. It should be noted that although these
sults are important in their own right, they are also the sta

y-
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57 3503SUPERSTRUCTURE GRATINGS IN THE TIGHT- . . .
ing point for quantitative analyses of SSGs, in both line
and nonlinear regimes@7#.

In Sec. II we review coupled-mode theory and introdu
the concept of well and barrier in this context. In Sec. III w
consider a general photonic well and find the transcende
equation determining its bound states. Then in Sec. IV
study three simple well types in some detail. In Sec. V
use some of these results, in combination with the tig
binding method, to find the photonic bands of deep SSGs
discussion and conclusions follow in Sec. VI.

II. COUPLED-MODE THEORY AND
SUPER-COUPLED-MODE THEORY

As mentioned, coupled-mode theory@8# is widely used to
calculate the properties of gratings. In its standard form
can be used whenever the grating is shallow and it can
be applied to all fiber gratings and to most gratings in se
conductors@14#. The key feature of coupled-mode theory
that one uses electric-field envelopes rather than the ele
field itself. When applied to a uniform grating one can th
replace the wave equation with a periodic refractive ind
with a set of coupled-mode equations with constant coe
cient@8,12#. To accomplish this we write the refractive inde
n as

n~x!5n01dn~x!1Dn~x!cosS 2px

d
1q~x! D , ~1!

wheredn(x), Dn(x), andq(x) define the superstructure an
are periodic functions of position. Heren0 is a reference
refractive index,dn is a small deviation of the average r
fractive index fromn0, Dn is the grating strength,d is the
nominal grating period, andq(x) represents periodic varia
tions of the period. The electric fieldE is written as

E~x,t !5@E1~x,t !e1 i ~k0x1q/2!

1E2~x,t !e2 i ~k0x1q/2!#e2 iv0t1c.c., ~2!

where E6 are the envelopes of the forward and backwa
propagating modes,k05p/d, and v0 is the associated
~Bragg! frequency. It can then be shown that theE6 satisfy
the coupled-mode equations@8,12#

1 i
] E1

]x
1

i

vg

] E1

]t
1k~x! E21d~x! E150,

~3!

2 i
] E2

]x
1

i

vg

] E2

]t
1k~x! E11d~x! E250,

wherevg is the group velocity atv0 in the absence of the
grating andk andd are given by

k~x!5
pDn~x!

l
,

~4!

d~x!5
2pdn~x!

l
2

1

2

dq

dx
r
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and thus characterize the grating. For a uniform gratingd
and k are constants, whereas for a SSG they are perio
functions.

We now first consider uniform gratings for whichd andk
are constants@8#. Assuming a harmonic time dependence,
that

E6~x,t !5e2 ivgDtF6~x!, ~5!

whereD is the detuning, we find that the envelopesF6 sat-
isfy

1 i
] F1

]x
1k~x! F21@d~x!1D# F150,

~6!

2 i
] F2

]x
1k~x! F11@d~x!1D# F250.

From these it is easy to see that if

2d2k,D,2d1k, ~7!

the envelope is evanescent, whereas otherwise it is propa
ing @12#. As mentioned, this result is related to the hig
grating reflectivity for frequencies around the Bragg fr
quency.

To understand how we analyze SSGs we consider a
example the simple case wheredn50, q50, so that by the
second of Eqs.~4! d50 as well. Further,

k5H 0 if ML2
L

2
,x<ML1

L

2

k0 if ML1
L

2
,x<~M11!L2

L

2
,

~8!

whereM50,61,62 . . . . This is thus a SSG in which th
grating periodically vanishes. HereL is the SSG’s period,
andL is the width of the ‘‘empty’’ regions. Figure 1 is the
band diagram@12,15# of the SSGs defined by Eq.~8!: The
dashed regions in Fig. 1 show the values of the detuninD
for which, as a function of position, the field envelopes a
evanescent according to Eqs.~8! and~7!, whereas in the clea
regions the envelope is propagating.

FIG. 1. Band diagram of the SSG defined by Eq.~8! andd50.
Dashed regions indicate values of the detuning for which, a
function of position, the field envelopes are evanescent, while in
clear regions they are propagating.
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3504 57C. MARTIJN de STERKE
Since SSGs, such as that in Fig. 1 thus correspond
periodic array of regions with evanescent and propaga
wave behavior, they can be interpreted as a periodic arra
wells ~clear regions in Fig. 1!, and barriers~dashed regions!.
SSGs are thus similar to the Schro¨dinger equation with one
dimensional periodic potentials@16#. It is one of the aims
here to exploit this similarity.

It is well known that solutions to the Schro¨dinger equa-
tion with periodic potential can be obtained numerically
sometimes from a simple transcendental equation in the
of the Kronig-Penney model; these solutions entail the e
tronic band structure and the associated Bloch functions@13#.
Analytic results can be obtained in limiting cases. For e
ample, when the periodic component of the potential
weak, thenearly free electron approximationapplies@13#. In
the opposite limit, regions of low potential are considered
be wells, separated by potential barriers. Thetight-binding
approximationcan be used if the interaction between t
eigenfields in different wells is small, which occurs when t
barriers are sufficiently strong@13#. It was shown earlier tha
the numerical method@7# and the nearly free electron metho
@2,3,7# used in solid state physics adapt straightforwardly
the case of SSGs@7#. Here we adapt the tight-bindin
method to SSGs and use it to find approximate analytic
pressions for the~photonic! bands and for the Bloch func
tions for deep SSGs@7#.

Analytic expressions for the photonic bands and the Ro
land ghost gaps indicate for which values of the detun
@Eq. ~5!# the SSG is reflecting, but the actual level of refle
tance cannot be determined in this way. However, it has b
shown that the additional information contained in the Blo
functions can be used to estimate the reflectivity as a fu
tion of detuning@7#.

III. PHOTONIC WELLS

Here we derive expressions that determine the posit
of the discrete levels of a single photonic well. We do so
s
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the general type with piecewise constant parameters, as i
trated in the band diagram@12,15# shown in Fig. 2. The
subscriptsW refer to well parameters, whereasB refers to
barrier parameters. For this structure to act as a potential
with discrete bound states, the envelopes must be propa
ing for uxu,L/2 and evanescent foruxu.L/2. From Fig. 2 we
see that we thus only consider detuningsD such that

2dW1kW,D,2dB1kB . ~9!

A discrete level of the potential well in Fig. 2 must be
solution to the coupled-mode equations~6! in which the en-
velopesE6 vanish asx→6`. To find such solutions we
first use the transfer matrix of Eqs.~6! if k and d are con-
stants@7#. It is easy to see that

S F1~x!

F2~x!
D 5M S F1~0!

F2~0!
D , ~10!

where the transfer matrixM is given by

FIG. 2. Band diagram for a general photonic well. The su
scriptsB refer to barrier parameters, whileW refers to the well. The
dashed regions indicate evanescent behavior of the field envel
and the clear regions indicate propagating behavior.
M5S coshax1 i
d1D

a
sinhax i

k

a
sinhax

2 i
k

a
sinhax coshax2 i

d1D

a
sinhax

D , ~11!
where

a5Ak22~d1D!2. ~12!

In a discrete level there is no net energy transfer and
the eigenfield must have the property

uF1u25uF2u2; ~13!

we note that this is equivalent to the quantum-mechan
property that the wave function associated with a bound s
can be made real@16#. Using transfer matrix~11!, it is easy
o

al
te

to see that for the envelopes to vanish asx→1`, at x5L/2,
envelopesF6 must be related by

S F1~L/2!

F2~L/2!
D 5F1RS 1

eiwR
D , ~14!

whereF1R is a normalization constant and

eiwR5
2dB1 iaB

kB
. ~15!
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57 3505SUPERSTRUCTURE GRATINGS IN THE TIGHT- . . .
Note that Eq.~14! satisfies condition~13!. One can define
F1L andwL at x52L/2 similar to Eqs.~14! and~15!. Now
using transfer matrix~11! in the well, one can relate th
envelopes atx56L/2, leading to a set of transcendent
equations. The result is

cos~aWL !1
aB

kB

kW

aW
sin~aWL !57

dB1D

kB
,

~16!

S dW1D

aW
2

dB1D

kB

kW

aW
D sin~aWL !57

aB

kB
,

both of which must be satisfied simultaneously. We note t
Eqs. ~16! are consistent in that simultaneous solutions c
always be found. Note also that Eqs.~16! are of the same
general type as the transcendental equations for the level
well in quantum mechanics@16#.

Since the envelopes can be multiplied by an arbitrary c
stant phase, we choose the constantF1R in definition ~14! to
be real~its magnitude is determined by normalization!. Then,
if the upper~lower! of the two signs applies, atx52L/2,

S F1~2L/2!

F2~2L/2!
D 56F1RS eiwR

1 D , ~17!

where both signs are allowed.
In Sec. IV we seek solutions to Eqs.~16! and the associ-

ated eigenfunctions for three types of wells.

IV. EIGENSTATES AND EIGENFIELDS
OF PHOTONIC WELLS

We now consider solutions to transcendental equati
~16! for three special cases. In the first, to be discusse
Sec. IV A, we takekW50 anddW5dB , leading to the situ-
ation as in Fig. 1; we refer to this as anunshifted empty well.
The second type, theshifted empty well, is similar to the
previous type in thatkW50, but is more general sincedW
anddB are arbitrary. It is discussed in Sec. IV B. The thi
special case, discussed in Sec. IV C, is that in wh
kB5kW anddBÞdW ~see Fig. 2!; this type is referred to as
having anequal well and barrier. The unshifted empty wel
is treated in the most detail, as only this type is used
construct tight-binding solutions for SSGs in Sec. V.

A. Unshifted empty wells

Here we consider the eigenvalues and eigensolutions
wells for whichkB5k0, kW50, anddB5dW50; note that
the last of these equalities does not imply any loss of ge
ality, as it simply fixes the frequency for whichD50. Equa-
tion ~16! now reduce to

cos~DL !57
D

k0
,

~18!

sin~DL !57
Ak0

22D2

k
.

Note that the number of solutions of Eqs.~18! is always
even, since ifD is a solution with the top sign applying, the
l
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n
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-
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2D is a solution with the bottom sign. Further, the numb
of solutions increases withk0L; this is expected ask0L rep-
resents the well’s strength. The number of solutions can
found to be the smallest integer larger than or equal
k0L/p. Hence, ask0L→0, there are two solutions, whic
are increasingly poorly bound. Of course this behavior
similar to that of one-dimensional quantum wells, which
ways support at least a single state. In analogy, we refe
the states that remain bound ask0L→0 as the well’s ground
states.

The solid lines in Fig. 3 show the positions of the vario
eigenstates as a function of the well strengthk0L. It is con-
sistent with the properties discussed above. The long-da
short-dashed line is given byD/k0512(k0L)2/2, which is
the lowest-order approximate solution ask0L→0 for the
ground-state solution withD.0. Additional approximations
can be obtained from the inequality

12
2

p
x<cosx<

p

2
2x ~19!

for uxu<p/2. With a straightforward generalization to oth
arguments, we find from Eqs.~18! and ~19! that

2N11

112k0L/p
<

D

k0
<~2N11!

p/2

k0L11
, ~20!

where N50,61,62, . . . . The short- and long-dashed
curves indicate, respectively, these lower and upper bou
for the upper of the two ground states in Fig. 3; clearly t
convergence is excellent, especially fork0L*p.

By direct calculation it can be shown that the eigenfun
tions, indicated byCW , are given by

CW57CS eiwR

1 D e1a~x1L/2!, x,2
L

2

CW57CS eiwReiD~x1L/2!

e2 iD~x1L/2! D , 2
L

2
<x<

L

2
~21!

CW5CS 1

eiwR
D e2a~x2L/2!, x.

L

2
,

FIG. 3. EigendetuningsD of the eigenstates for a well with
kW50 and dW5dB50, as a function of the well strengthk0L
~solid lines!. The short- and long-dashed lines are lower and up
limits, respectively, given in inequality~20!; the long-dash–short-
dashed line indicates an approximative result discussed in the
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where the signs correspond to those in Eqs.~16!. Further, the
constant

C5A a

2~aL11!
~22!

is determined by the normalization*2`
` C†Cdx51 @7# and

wR was defined in Eq.~15!. By direct calculation it can be
confirmed that the various eigenfunctions are mutually
thogonal.

Figure 4 shows the eigenfunctions for an empty unshif
well as a function of position. We takek0L54, so that,
according to our earlier argument, the well has four discr
eigenstates. Figure 4~a! shows the result forD50.8988, Fig.
4~b! for D50.3131, Fig. 4~c! for D520.3131, and Fig. 4~d!
for D520.8988. The various line types indicate three of t
Stokes parameters@17# that can be constructed from th
eigenfields. Indicating the components ofC by c6 , these
can be written as S05uc1u21uc2u2 ~solid lines!,
S25c1c2* 1c2c1* ~short-dashed lines!, and
S35 i (c1c2* 2c2c1* ) ~long-dashed lines!. Recall that ac-
cording to Eq. ~13! the fourth Stokes paramete
S15uc1u22uc2u250. Note that by showingSi /k0 versus
k0x in Fig. 4, the results do not depend on the value ofk0.

Many of the features in Fig. 4 are easily understood.
example,S0 is constant in the well region becausekW50.
Further, from Eq.~21! it can also be seen thatS0 andS2 are
even under changing the sign ofx, whereasS3 is odd. Next,
for the two fundamental states atD560.3131,S2 has no
nodes, whereas for the next higher states atD560.8988,S2
has a two nodes, similarly to the properties of quantum w
according to the one-dimensional Schro¨dinger equation@16#.

FIG. 4. Eigenfields of the four bound states of a well w
k0L54. Results are shown for~a! D50.8988,~b! D50.3131,~c!
D520.3131, and ~d! D520.8988. Indicated are
S05uc1u21uc2u2 ~solid lines!, S25c1c2* 1c2c1* ~short-dashed
lines!, andS35 i (c1c2* 2c2c1* ) ~long-dashed lines!. The vertical
lines indicate the well edges. By showingSi /k0 versusk0x the
result does not depend onk0.
-
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te

r
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Note finally that although the fields and the various Stok
parameters are continuous, the derivatives are not. The
ception isS2, but this is a particular property of the simp
well considered here in whichd(x) is constant.

B. Shifted empty wells

Here we again consider the eigenvalues and eigens
tions for wells for whichkW50, but unlike the wells in Sec
IV A, now dWÞdB . Then Eqs.~16! reduce to

cos~DL !57
d01D

k0
,

~23!

sin~DL !57
a0

k0
,

where, without loss of generality, we have takendW50 and
we have setdB5d0, and similarly fork anda.

Since we are interested in bound states only, the solut
of interest have detunings such that

2d02k0<D<2d01k0 , ~24!

following the same argument as that leading to Eq.~9!. In
Fig. 5, which shows the positions of the eigenstates a
function of d0 for a well with k0L54, inequalities~24! in-
dicate the diagonal lines. Note that ford050 in Fig. 5, the
same situation as in Sec. IV A ensues.

Figure 5 shows that the positions of the bound states w
respect to extremes~24! vary as a function ofd0 and that for
certain values ofd0 a bound state merges with the co
tinuum. Hence the number of bound states depends ond0.
For example, whereas ford050 there are four bound state
for d050.4 there are only three. It is easy to show that fo
given value ofk0L states merge with the continuum when

d0

k0
5611

Np

k0L
,

D

k0
52

Np

k0L
, ~25!

FIG. 5. Positions of the discrete eigenstates of a shifted em
well with k0L54. Shown is the eigendetuningD vs the barrier shift
d0, both normalized with respect tok0. As discussed in the text, al
solutions must lie between the two diagonal lines. The horizon
and vertical dashed lines follow from Eqs.~25!.
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57 3507SUPERSTRUCTURE GRATINGS IN THE TIGHT- . . .
where the upper~lower! sign refers to the upper~lower! di-
agonal line. A few of these~with the upper signs applying
andN522 and 0) are indicated by the horizontal and v
tical dashed lines in Fig. 5.

The eigenfields associated with the states of a shif
empty well are similar to those in Fig. 4. The main differen
is that dS2 /dx is not continuous as in Fig. 4 becaused is
discontinuous. Apart from this the number of nodes, d
cussed at the end of Sec. IV A, is unchanged. This impl
in particular, that ifd0 is sufficiently large (d0.11p/4 in
Fig. 5!, then the well does not support a ground state
which S2 has no nodes~see Fig. 4!.

C. Equal wells and barriers

Here we consider wells for whichkW5kB[k0 and dW
ÞdB . Without loss of generality we setdB50. Dispersion
relations~16! then reduce to

cos~aWL !1
aB

aW
sin~aWL !57

D

k0
,

~26!

dW

aW
sin~aWL !56

aB

k0
.

Solutions to Eqs.~26! are shown in Fig. 6 for a well with
k0L52. The solid lines show the eigendetuningD vs well
shift dW , both normalized with respect tok0. Note that for
dW50, corresponding to a uniform grating, the structu
supports no bound states, as required. However, for finitedW
at least a single such state can be found. The dashed lin
Fig. 6 bound the regions for which bound states can ex
The horizontal dashed lines indicate that for detunings s
that udu.k0 the field is not evanescent asuxu→`, whereas
between the diagonal dashed lines, given
D/k05dW /k061, no bound states exist because the en
lope is evanescent everywhere.

From Eqs.~26! it can also be derived that discrete eige
states merge with the continuum when

dW

k0
56F16A11S pN

k0L D 2 G , ~27!

FIG. 6. Positions of the discrete eigenstates for a structure
dB50 andkB5kW[k0 ~solid lines! vs dW /k0. The dashed lines
indicate the boundaries of regions for which no such states
exist.
-

d,

-
s,

r

in
t.
h

y
-

-

where the signs are unrelated, andN561,62, . . . . The
eigenfields are again similar to those in Fig. 4, but with tw
key differences. First, since herekWÞ0, S0 in the well is not
constant. Second, sincek is constant, whereasd is not, the
Stokes parameterS3 has a continuous first derivative
whereas that ofS2 is discontinuous at the interfaces, as c
be seen directly from Eqs.~3!.

V. TIGHT-BINDING APPROACH TO SSGS

Here we apply the tight-binding approach@13# to find
approximations to the properties of SSGs, based upon
results for a single well. As in the theory for the Schro¨dinger
equation with a periodic potential, we expect in a SSG
eigenstates of individual wells to broaden, to form ban
@13#. These bands are separated by~Rowland ghost! gaps,
where the transmittance is small.

Though the initial derivation is general, it is applied to th
SSG given by Eq.~8! and d50, with the band diagram
shown in Fig. 1. In the tight-binding approach, such an S
is considered to consist of a periodic array of unshift
empty wells as discussed in Sec. IV A.

In deriving the tight-binding results we closely follow th
derivation of Chap. 9 in the text by Ashcroft and Merm
@13#. We write Eqs.~6! for a SSG as

MF[~MW1DM !F5D~k!F, ~28!

whereF indicates the column vector with componentsF6

and operatorM follows directly from Eqs.~6!; in this prob-
lem it plays a similar role to the potential in the Schro¨dinger
equation. SinceM represents a SSG, it must be period
~with periodL). In the spirit of the tight-binding method we
write this operator as the sum ofMW , the operator associ
ated with a single well, such as those studied in Sec. IV,
DM[M2MW . The eigenfieldsCW of MW , which, in prin-
ciple, can be calculated straightforwardly~see Sec. IV!, sat-
isfy

MWCW5DWCW . ~29!

For an unshifted empty well,CW is given by Eqs.~21!,
whereasDW follow from Eqs. ~18!. Finally, the right-hand
side of Eq.~28! explicitly indicates that in periodic structure
the eigendetunings are a function of the reduced wave n
berk @13#. In the subsequent analysisM2MW is considered
small, so that it can be treated perturbatively.

In the tight-binding scheme the eigenfield for a SSG, in
most general form, is written as a superposition of the eig
fields of the individual wells as@13#

F5(
N

(
j

bje
ikNL CW, j~x2NL!, ~30!

where thebj are constant coefficients. Here the summat
over N includes all the wells in the SSG and the summat
over j includes all bound states of each well.

In the calculation below we find that all contributions
the expressions for the features of the photonic bands and
associated eigenfields contain some positive integer powe
the parametere[exp(2aL) roughly corresponding to the
decay of the envelope function in the barrier region betwe

th
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two wells @cf. Eq. ~21!#. Because of the assumption that t
tight-binding approach applies, the barriers can be take
be sufficiently thick so thate!1. Here we are interested i
the lowest-order results and we thus ignore all second-
higher-order contributions ine.

Within the limitation described in the paragraph abov
the summation overj in ansatz~30! can be dropped. This is
so since for a particular well state, the effects of other sta
are ignored, as they affect the results only to second
higher orders ine. Now by substituting ansatz~30! into Eq.
~28! and following the procedure described by Ashcroft a
Mermin, which makes use of Eq.~29!, it is found that

D~k!5DW12cos~kL!E
L2L/2

L1L/2

C†~x! DM C~x2L! dx

~31!

to first order ine. Note that since the average of the cosine
result ~31! vanishes, to this order the photonic band form
symmetrically about the eigendetuning of the bound state
the isolated well.

To evaluate the integral in Eq.~31!, recall that according
to Eq. ~28! operatorDM represents the difference betwe
the SSG ‘‘potential’’M and the well ‘‘potential’’MW . This
is illustrated in Fig. 7, which shows schematically the para
eterk associated withM , MW , andDM for an SSG given
by Eq. ~8! andd50.

Equation~31! can now be evaluated by substituting e
pression~21! for the eigenfield and using the definition o
DM , illustrated in Fig. 7. Note that the integration can
limited to nearest-neighbor wells, as only these lead to c
tributions linear ine. This leads to

E
L2L/2

L1L/2

C†~x!DMC~x2L!dx56
a

aL11

a

k
e2a~L2L !,

~32!

which clearly is of first order ine. We note that the choice o
signs in Eq.~32! is the same as in Eqs.~21!.

Figure 8 can be used to judge the accuracy of approxi
tions ~31! and~32!. Shown are the positions of the lower an
upper edges of the upper ground state of the empty, unsh
SSG withk0L51, for various different values fork0L ~see
also Fig. 1!. In particular, shown are the positions of th
lower and upper edges of the upper ground state of
empty, unshifted SSG, according to the tight-binding ana
sis ~solid lines! and according to exact numerical calcul
tions~dots!. Clearly, with decreasingL the wells are increas

FIG. 7. Schematic of the generalized potentialsM , MW , and
DM for an unshifted empty well.
to

d

,

s
d

s
of

-

n-

a-

ed

e
-

ingly strongly coupled and the level becomes bandli
according to Eq.~32!, the tight-binding analysis predicts tha
the bandwidth scales with exp(2aL).

Clearly, the tight-binding results are accurate ifk0L*5,
but they are unsatisfactory for smallerk0L. Note that the
most obvious deviation of the tight-binding result is a shift
the average value of the edges, corresponding to a rigid s
of the band. Such a shift does come out of the tight-bind
analysis, but to ordere2.

Results such as those in Fig. 8 let one make some pre
tions about the SSG’s reflection spectrum: Within the pho
nic band the envelope has propagating behavior and
SSG’s reflectance is small. In contrast, in a Rowland gh
gap the envelope is evanescent and the reflectance
proaches unity if the SSG is sufficiently long.

VI. DISCUSSION AND CONCLUSIONS

The results from Sec. V allow us to draw some importa
conclusions about Rowland ghost gaps and their spacing~in
detuning!. Let us first consider the spacing between adjac
Rowland ghost gaps. According to inequality~20!, the levels
of an unshifted, empty well are roughly equally spaced a
detuning ofp/L if k0L@1. Whereas an equal spacing is al
found for shallow SSGs~see the discussion in Sec. I!, the
quantitative differences are notable: in shallow SSGs, a
cent Rowland ghost gaps are spaced byp/L. However, in
the tight-binding result it depends on the well width, where
for shallow SSGs it depends on the SSG period.

It should also be noted that it is, in principle, straightfo
ward to extend the present analysis to include higher-or
terms ine. In particular, one can identify a number of di
ferent contributions at ordere2. These include a contribution
in cos(kL) as in Eq.~31!, as well as a dc shift of the band
and a contribution at cos(2kL) that leads to a change in th
band’s shape. In addition, there is also a contribution due
the presence of other levels in the isolated well. This lead
a set of simultaneous equations rather than to the sin
equation~31!.

In conclusion, we have developed a tight-binding a
proach to describe the properties of deep SSGs. This all
us to find approximate analytic expressions for the hig
reflecting spectral regions of the grating. Although in t

FIG. 8. Position of the top and bottom edges of the photo
band associated with the upper ground state of an empty, unsh
SSG withk0L51, as a function ofk0L. The solid lines indicate the
tight-binding results using Eqs.~31! and ~32!, whereas the dots
represent exact numerical results.
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general case analytic expressions cannot be found,
Fourier-based theory@2# and the theory developed here c
give some insight as they are applicable in the two extre
limits in which the superstructures are shallow and de
respectively.

In using the tight-binding approach the bands and gap
a SSG are considered to be associated with levels of sin
isolated wells. When the wells are sufficiently close togeth
these levels broaden to give rise to bands~see Fig. 8!. An
intrinsic limitation of the tight-binding method can be se
from inequality~9!, which gives the detunings for which th
outer gratings act as barriers. Only detunings satisfying
inequality can be considered, even though it is known t
Rowland ghost gaps occur at other values of the detunin
well. These have to be described using other methods. N
theless, the detunings for which the tight-binding method
be used generally exhibit the strongest reflections.
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From Fig. 8 it is clear that for detunings that satisfy i
equality ~9!, the tight-binding method gives satisfactory r
sults if the bands are sufficiently narrow. The analysis a
allows us immediately to draw conclusions about the refl
tivity of the SSG, though at the level considered here th
are only qualitative. Nonetheless, the photonic band struc
and the associated eigenfields can be used as inputs in s
coupled-mode theory. This theory lets one find the SSG
flectivity and can also include, if required, nonlinear effec
@7#. This will be the subject of a future work.
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